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ABSTRACT

In this paper we consider qn approximation scheme for
an optimal control problem described by a hyperbolic partial-
functional differential equation used to model the elastic motion
of a viscoelastic body of Boltzmann type. The method is based
on combined finite element/averaging approximations. We present
theoretical and numerical results for a problem with quadratic
cost functional. ,
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Introduction

We discuss the development of numerical schemes for the modeling and

control of longitui iral vibrations in a rod with Boltzmann - type viscoelastic

damping. It has been thought for some time that a high fidelity model with an

accurate description of the damping mechanism is crucial for applications in-

volving control and stabilization of large flexible structures. The model which

we describe below may be considered as a prototype for the investigation of

such applications, In particular, we consider Boltzmann-type viscoelastic

damping in our model (otl.er types of damping which have been studied include

viscous, Kelvin-Voigt, structural, hysteretic, etc.).

Our ideas apply and extend to various structures, but for simplicity of

exposition we consider a model for the longitudinal motion of a uniform bar

with fixed ends. This leads to the following equation (see [5]):

(1.1) (t, X) =a f au (t,x) + g(s) a u(t+s,x)ds + f(t,x)
6 ax

where p is the density, and f is the (applied) body force. Here, u(t,x) is the

longitudinal displacement at position x along the rod at time t. The constant a is a

stiffness parameter and the function g(s) (described in more detail below) may be

considered as the damping parameter. Note that without the integral term this

would be a purely elastic model (the wave equation with no damping). The

integral term (referred to as the memory or history term) arises from the fact that

in the underlying constitutive equation for the Boltzmann model, the stress is

assumed to be a function of the strain and the strain history.

-,,
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We make the following reasonable physical assumptions on the function 5

g: (--,0J- and constant a: "
'-S.

(1) g C- Hl(-r,0), ax > 0. -.

(2) There exists a continuous function go (-90] -.(-,0]

and

constants Jt > 0, o > 0 such thatP

(a) g(s) = go(s) = 0, o p

(b) g(s) 4 g0(s) < 0, -r < B 0

(c) EA - + g(s)ds ) E0

(d) d 
'

d s g(s) ( ggo(s) a.e. on [-r,0].

The existence of Eo follows from general properties of elastic moduli.

Condition (d) is a "decaying memory" assumption. For a further dis-

cussion of the physical basis for these assumptions, see [15], [16], and

[241. The fixed end boundary conditions are given by ._.

(1.2) u(t,0) = 0 = u(t,l).

We consider initial data of the form

u(0,x) = d(x), - u(O,x) = v(x), 0 < x < l

(1.3)
a
-u(s,x) =h(s,x), -r 4 s < 0, 0 < x <1.,',

ax

This represents initial displacement, velocity and past history.

5.,.,S"

)IVv

% .'V % V .%Q•S.'% € "'.". € "vt • . • % *5 %,," " -- -'". "%,



dA

-3-
V

We are interested in the problem of constructing a sequence of finite

dimensional "approximate" models which can be used for control design. Our

ideas are developed in the context of standard results from linear semigroup

theory, such as the Hille-Yosida theorem and the Trotter-Kato approximation

theorem. In addition, we appeal to many results concerning the abstract linear

quadratic cost optimal control problem ([12], [13], [7]). Again we note that our ideas

can be easily modified to include other boundary conditions, as well as easily -,

extended to include structures suclh as Euler-Bernoulli beams with Boltzmann

damping.

In section 2, we develop a state space formulation of the class of PFDE's

which we will consider. A well-posedness result is given in this context. In

section 3, we develop an approximation scheme, and convergence results are given.

In section 4, we present some examples, including an application to a quadratic cost

optimal control problem. ,

The notation in this paper is standard. The symbols <.,.>x and I111x stand

for the inner product and norm, respectively, on the Hilbert space X. Often

the underlying space X is not specified but will be understood from the context.

The symbol 6 indicates that the expression on the left is defined by the

expression on the right. Also, X(X,Y) denotes the space of bounded linear

operators from X to Y.

S
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2. A State Space Model

We now proceed with the formulation of the system (1.1)-(1.3) as an

equivalent abstract Cauchy problem in an appropriate Hilbert space. In several

recent and relevant investigations ([10], [11], [22], [23]), the underlying PFDE is

treated as an abstract FDE. In a manner analogous to ordinary FDE's, a ,''

solution semigroup is defined, its infinitesimal generator is characterized, and a =

Cauchy problem is formulated on a "product" space. An important problem in

this approach, however, is the prescription of appropriate initial data so that the -,

abstract FDE is well-poscd. Kunish and Schappacher have shown ([18]) that a

"natural" choice for a product space generally leads to a Cauchy problem which

is not well-posed. The correct choice of state space often involves the use of

suitable interpolation spaces (see [9], [10]).

We proc:c 4  i' 'lifferent inznner by firs, defining t,'e state space (a ._

"product" space) Z and state operator A . Well-posedness follows when it is,_.

shown that A is the infinitesimal generator of a Co-semigroup on Z . To -

proceed, it will be convenient to introduce the sPace = 1(011 defed ri,

2 2-'

fo
To explain the use of the space L , we remark that (as will be described below)

2'

we choose to formulate the second order (in time) differential equation (1.1) as a

first order system using strain u.(t,x) and velocity u t (t,x) as states rather than dis-

placement u(t,x) and velocity. (This is done because we use strain and velocity

feedback in the optimal control problem to be considered below in Section 3). The

space L ° corresponds to that part of the state representing the strain.

Hcuristicall , then, one can think of the zero integral mean condition-S

:Ol
"'I'-,

0"".'
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x Ut xdx o= as representing the boundary conditions given by (1.2).

Next, let X - L2(0,I) with norm jjfjl = Jo II 2dx,

Y = L°(O,) with norm =f= I IfJ dx,

and W = L2 (-r,O;Y) with norm 11jw= -_ljw(s) ds.

Let G(s) and K dcnote thc 2 x 2 matrices defined by

G(s)= 
and K0= ,

respectively. Define the operator A0 :(A 0 ) C X x Y -. X x Y with

domain

)(A = 1 (0,1) [H'(0,1) n L°(0,1)]

by

o dx
A.A. A°= d- 0

dx

V.
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loobtain a 'cli-od mdel, ' let z't) dent the sae

U (t, X)

z (t) = u(t,x)

u(t+s,x)
ax

which represents the velocity, the strain, and the past history of the strain.

Define the state space Z by

22 + 110,
2  

+ 1 112
with norm =Ily + ll+lil

wx Y W -

z -

We shall also consider the equivalent norm on Z given by

= 1,1 + E 110,12 g(s) 1w(S) 12ds
xA rr

Define the operator A on the domain

D(Ay E H'0 I) wE E Hl(-r,O;Y) wO

00

Q0 +

g~s)w~s)ds -H'0, I w(0
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by

+ fg(s) w(s) ds

dx~ dx
,~ x0

dm
.d

4" -<Il s, L
"A°K I+ G s)dsL

ds

Let F(t) be given by

F(t)= 0 E Z
[o 1f .

The system (1.1)-(1.3) can now be formulated as the abstract Cauchy problem

(2.1) i(t) = Az(t) + F(t)

(2.2) z(O) = z 4 (v(x), d'(x), h(s,x))T

We note that this state space formulation is analogous to the usual state space

formulation for ordinary FDE's (see [2] and [6] for a discussion of the "reduced"

structure). The well-posedness of (2.1)-(2.2) is demonstrated by showing that the

operator A is the infinitesimal generator of a Co-semigroup on Z and it is

'e
I,

..4
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sufficient to consider the norm [. on Z. The operator A is not

dissipative, and it will be useful to introduce a dissipative operator A 1  via a

similarity transformation. To this end, define the operator L E f(Z,Z) by

(2.3) L[I = [ ]" I-W

Note that L = L -1  and L is bijective. Next define the operator A on

the domain

3(A) = (z E Z : Lz E D (A))

(9 E H1(0,1) ,w E nl(-r,0;Y)

E Z " - w(s)ds] E H'(0,j)

w(0) =0

by A, - L-AL . In particular, it follows that

- ~ g(s) w(s) ds

A11i -- ,

q,+ d-w

ds

*0,/
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Well-posedness is provided by the following result.

Theorem 2.1. The operator A1 generates a Co-semigroup.

Proof. The proof proceeds as follows. We first verify that Al is dissipative,

and then show that R(,I-A1 ) = Z for some X, > 0 . We then show that A1

is a closed operator. It follows that (\l-A 1)' exists and is a closed, bounded

and densely defined operator. Thus, I)(XI-A 1 )" = Z, and hence

R(XI-Al) = Z Therefore, 1)(Al) will be dense in Z (see Theorem 1.4.6 in

[191), and the Lumer-Phillips Theorem will imply that Al generates a

Co-semigroup. In order to complete the details, let [i E D(A1 ). Then

Lw.

-a-

2 A[ [

2 fl g(s) E0 [ w(s)ds dx + 2 E Y

o sI, l dw
- 2 g(s) + - w(s)dxds

-o I ds I

p

- -r 2 [gs f .(s) dx ds + fr["~) fw(~xsS

0  1 
'w

2° g (S Ylw(s) dx ds +; [ 1

= - - d g(S) w ( dx d g(s) w (S )dx ds

Jds f0
-r0 -

-X"-

<, ~ s t w2(s) d x d s -4 0 .
- 0

=,% .,"=.% . j" " = ,. .,,L',j.j. _%j .. .e,. " "L,% .. % . % % % .',%.. % % ' . ' .% -.,., . *.,' ,- %,.%. , . , . -



-10-

Hence, Al is dissipative in Z . To show that R(XI-A 1 ) = Z , it is

sufficient to show that (XI-A 1 )D = Z , where D is given by

D [ 1 e D(A1 ) : Ep e H'(0,1), w E H1 (-r,O;HI'(0, 1) .(A 1 )

Suppose [ is orthogonal to (XI-A)D Then

0 = u, ,y - f' + g(s) w'(s)ds +

v, X,-w' +
)y.

KZ, >w - -

.

for all [YO] E D . For each y E H2 (0,1) f Ho(0,1) , let P = and

w(s) ' (hence w(s) is a "constant" function in W ). Therefore sing

E = a + g(s)ds]

0 = u, Xy - [' g(s)ds + fg(s) {-" ds

= u, ,, - oil for all ,p E H2 (O,l) 0 H'(O,) .

The image of H2 (,) n H'(0,1) under the operator Lx2I- jx2J is dense in gel

L2(0,1) which implies that u- 0 . If u-= 0 and @ 0 then

/ dw
0 /'X for all w E Hl(-rO;H'(O,l))0 =z, ,w ds )w

5.K



and z 0 by similar reasoning. Next, choose (p 0 and w 0 . It

follows that

0= <v, XP>y for all 0 E H1(0,1) n Y.

This implies that v = constant, and hence v = 0 since v - Y Thus, we

conclude that R(XI-A) = Z . It remains to be shown that A1  is closed.

Assume that the sequence

(Zn) __
Wn- n=1

satisfies

(2.4) z n E D (A,),

(Pp[w](2.5) Zn - -"z in Z ,.,

and

(2.6) A - Y = 18 in Z . *,'

We must show that z E D(A,) and Axz = y . We deduce from (2.5) and (2.6)

that Wn 9 and

(2.7) -- 0.

Since the differential operator B , defined by D(B) Ho(0, 1) and Bf f'

is closed on L2(0,1) , we conclude that p.,

.'

p,,

(2.8) , E H'(,I)

0-'

A A A..N
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and

(2.9)

By a similar argument, we see that

PO P

and

(2.10) [P - g (s)w(s)ds] a

P PP

Next, (2.6) and (2.7) imply that

dw

Also, (2.5) implies that wn(s) -w(s) in W .Again, using an argument

similar to that used above, we conclude that -

(2.12) w r: Hl(-r,O;Y),

(2.13) w (0) =0

and
d w

(2.14) 7= Y +

Combining (2.8), (2.10), (2.12) and (2.13), it follows that z E D(A1) .Also, (2.9),

(2.11) and (2.14) imply that A~z =y ,and the result follows.
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Observe that since A = L'A1 L , it follows from Theorem 2.1 that A

V.generates a C0-semigroup. We state this in the following.
a.

J.

Corollary 2.1. The operator A generates a C0-semigroup.

a.'

We conclude from Corollary 2.1 that the system (2.l)-(2.2) is well posed.

a,

I
aJ.
'.pa

a.-
'a...

N-'

N..

N'.

'.1~
l.A.

~a.

a,-
"a.

a.-.

-a.

I
a.

'a....
'aa..

a..

'a.

'a.'
'a.

.'a.

2~

a..
'a-a..
'a
'a

't~JL.
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3. An Approximation Scheme

We are interested in constructing an approximation scheme for an optimal

control problem associated with the viscoelastic model. For 5 > 0 and a

partition of [0,1] given by 0 < xi < I , i= 1,2,. ,P , the operator

Sl : L is defined by

S =(f) f(x)dx

The problem is to minimize the cost functional

r,,.

(u) = SI 4(tx) + I I (t'x) + R U(t),dt

subject to dynamics governed by

(3.1) y (t, X) [a a_ y(t, x) + Jg(s) y(t +s, x)d + b(x) u(t),
8t
2  ax [ x ds

where b(x) E 1 2(0,1) is a given function. Initial data and boundary conditions

are as in (1.2)-(1.3). Loosely speaking, the cost functional corresponds to

observations of the average velocity and strain in a neighborhood of each Ti We

point out that we consider observations of average velocity and strain rather

than point observations of velocity and strain because this allows us to

formulate an LQR problem with bounded (rather than unbounded) operators in

the cost functional [i.e. point evaluation is not a bounded linear functional on

on L 2(O,).]

S

% % ,. . ., % . m, " s " 's,.i., .. ,". ' ",. ' ,.. w,,
"

" ''" 
'

' , ' '"" '" " J'" ' "'-- ' " i." ' " ". " ' <. ' ,
'

." .'" ." "' ' '. .,.' '- -'.,. ', ,',



Based on the results of the previous section, we can treat this problem

equivalently as an abstract regulator problem on the state space Z%

(3.2) minimize J 5(u) C f fCz(t) j+ R I u(t) 12) d t
JO.

subject to dynamics governed by

i(t) = Az(t) + Bu(t)

(3.3)
Z(O) = z0

Here Z and A are as defined in the previous section. The operator

B: Al Z is defined by

[b(x)
Bu 0 ]u(t) .

0V

The operator C5 :Z - p2p is defined by

C P

SP)
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It can be shown that (see [12]) there exists a unique optimal control for (3.2)-(3.3)

which is given in feedback form by

u(t) = - Kz(t) .

Further, K = R'lB*r , where it is the unique non-negative self-adjoint

solution of the algebraic Riccati equation

(ARE) A*rt + 7A - nBR-lB*n + (CS)*C6 = 0

Since K is a bounded linear functional on Z , we can write

u(t) -Kz(t)

S- <k l ,w(>x - (k 2, >y - (k 3,W>w

where k, E X , k2 EY ,and k3 E W. We are interested in an approximation

scheme which, in addition to accurately simulating the dynamics of (3.1), also gives

a reasonable approximation of the functions kJ , k 2 , and k3 '

We shall be interested in approximation schemes consisting of sequences of

finite dimensional spaces ZN C Z and operators AN : Z _ ZN , each AN the

infinitesimal generator of a Co-semigroup TN(t) . If pN : Z -_ ZN is the

orthogonal projection defined by ZN , then for each N we have the following

finite dimensional regulator problem:

(3.2)N minimize Jt(u) Ic z(t)I + Ru(t)I)dt

subject to

zN(t) = ANZN(t) + BNu(t)

Up!

~ V ~y* 2,. ~ V/ ~U %,f~.f~~U ~ ~ ,m ,,r ~ -~
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(3.3)

zN(O) PNz

Here BN = pNB

This problem is finite dimensional and can be solved numerically. Naturally,

the nature of the approximation scheme will determine how well the solution of

this problem "approximates" the solution of the original problem (in particular,

-v.hcther the approximating feedback gains converge). Gibson [13] (see also

[4]) studied this problem and showed that, in addition to satisfying PNz- z

for all z E Z , an approximation scheme {ZN,AN) should have the property

that

(3.4) TN(t)z -- T(t)z , for all z

and

(3.5) TN*(t)z T*(t)z , for all z

with uniform convergence on bounded t-intervals. Here, T(t) denotes the

semigroup generated by A and T*(t) (= T(t)*) is the semigroup generated

by A. We note that an approximation scheme (ZN,AN} which satisfies only

(3.4) is useful for "simulation" purposes; i.e., approximation of the open loop

problem. However, for the closed loop problem, (3.5) is important in order to

guarantee strong convergence of the approximating feedback gains. For the

approximation scheme which we shall develop, convergence results (i.e. (3.4) and

(3.5)) are given in the context of following version of the Trotter-Kato

semigroup approximation theorem (see [19]).

% ~ %



Theorem 3.1. Let A E G(M,B) be the infinitesimal generator of a CO-sernigroup

T(t) in a Hilbert space Z , and suppose there is a sequence of linear uperators AN

each of which generates a CO-semigroup on Z .If

H I) AN E G(M,O) for N = 1,2,.

H2) ANZ-*Az for zED, D a dense subset of Z.

and H3) there exists X'0 with Re X0> 03 such thlat

(A - XODis a dense subset of z,

then TN(t)Z - T(t)z for all z E Z ,t )0 and the convergence is uniform in

cornpact t-intervals.

UP

With this preliminary discussion in mind (especially the importance of

(3.4) and (3.5)), we proceed to develop an approximation scheme for our

problem. Recall that the state space Z is defined by

(3.6) Z =X x Y x W 1-L2(0,l) x LO(O,1) x L2 (-r,O;LO(,))

with norm

(3.7) 111 + p12+ IIWI12 J( 2+ 2) + J w2(S)dxds

z

The state operator A is defined on the domain-

(3.8)~~ ElA H'(0, 1) , w E Hl(-r,0;Y)

([w1 _0+ gswsd E H'(0,1) W w(0) =

P P r

%I
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by

+ r~g()W(S~d

dxW

dw a'

ds ''a

A f [ ] + (r()(s)] ds1

(3.9) -d I I

ds

We will also need to consider the adjoint of A .It is straightforward to

verify that A* is defined on the domain

(3.10) (Aa) C-E Z:
[W'Pw EHl(-r,O;Y) -r 0

A p

w p

by I.

(3.11) ALPJf - + w(Op,

pds p
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Equation (3.9) suggests a two-stage approximation for A . In particular, one

must approximate the operator Ao  by discretizing the spatial variable x

d
Further, one must approximate - by discretizing the delay variable. Roughly- ds

speaking, we will use a finite element approximation of AO , and the AVE r

approximation scheme (see [2]) for the delay variable.

* To proceed, divide [0,1] into N equal subintervals and let hN(x),

i = 0,1,. -,N , denote the standard "hat" functions which are continuous,

piecewise linear, and satisfy hN(j/N) =  5.. , for j = 0,1,. -,N . For

convenience in the ensuing discussion, we shall use the shorthand notation
, d

h= hN(x) and h'= -d hN(x) . Next, we define the subspace XN of X bv
dx

XN = span {h;ii = 1,2,.. .,N-l)

and the subspace YN of Y by

yN = span (h i' i = 1,2,. .,N-I)

Next, define the bilinear form a(.,.) on X x Y byaI' [Yl f
(3.12) a 01ii o - 1

We define the operator A N (the finite element approximation of A) as the

restriction of a(..) to XN x yN

(3.13) (ANu,v) = a(u,v)0 XxY

for u,v E XN xyN.

To complete the "first stage" of the approximation, let

- a

a,°
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WN = L (-r,O;,N) C W'

(3.14)

ZN = XN x NN x WN

and define AN on the domain

(3.15) fl(AN) = E ZN w N E H'=r;yN), wN(0) ON

A N [W] N + rG(s) w N(s) ds N

N' r 0  olNI N

(3.16) AN N d ,Ni
ds

Lc Z N  ,N

Let P Z -ZN denote the orthogonal projection onto ZN , and note that

PNp PX 

",

PN pNo
(3.17) z_

LP J

where pN y yN pN W WN arc the respective p

orthogonal projections.

Observe that for each N , AN is the infinitesimal generator of the Co- "

semigroup on ZN corresponding to the ordinary delay-differential equation

(3.18) d [A~) - AK + (A NG)(s) [If: ds(3I ) dt- O.N(t)j = 0 K  (N(t) + -r N(t +S) "

Thus, for the "second stage" of approximation, we can use anv of several

• _ . . .. .

.

,,=, ,, . . ., , . . ,-,-, %-% *, . % - '- -* ". , % %-% '- -% -, ,, ', ,, ,,,' ,(" -, ". . -, * -, ,, % ,, ° ' %. " 5'
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schemes in the literature for this type of problem (see [21, [3], [17]). Since we

are interested in optimal control, in this paper we will use the AVE scheme (see

[2]), which is known to have desirable properties (recall (3.4) and (3.5)) for such

problems (see [13]).

Subdivide [-r,O] into M equal subintervals [tMtM ,j = 1,2, .,Mj-1,

Lwhere tM(.) denote the characteristic function of [tMtMl,
M *j'j1

[tM,t M 
1 1 and define the spaces WN.M C WN and ZNM C ZN by

U M
(3.19) WN'M W wN E L2(-r,0;Y) wN = Z vNXM(.), V E yN

j=1

and

(3.20) ZNM = XN yN WN,M

respectively. Next define the operators QN.M ZN ZN,M by

D'N A[K + r GM

(3.21) QNM N

w N  M M "
E- -

j=1 r.

where

(3.22) (wN)M = q (wN)M = M- iwN(S)ds
tM

and

'4

€4

% 9." ,'% -% -% m
%

% "q ' ') '. "% % -. % , '.,'.) - o",'% ". .. '.'. . • ..... . ..-.. . . . . . . . . . . .... . . . . . . . . .o.-% %o %°
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(3.23) GM - HG(s) ds , and gM _- t- g(s)ds
r tM r f tM

for j = 1,2,--,M . Combining the two stages of approximation, we define the

operator ANM : Z - ZN.M by

(3.24) ANM QNMp.

Remark 3.1. In view of hypothesis (H2) of Theorem 3.1, the approximation

scheme should satisfy

IIANMz - Azlj -- 0 zm

for all z in some dense subset of Z . From the triangle inequality,
IIANMZ - Azll <_ IIQNMpNz - ANPNz11 + IAPNz- Azil = Si + S,

Standard spline estimates imply that S2 - 0 as N -. for each z, but

convergence of the AVE scheme implies only that S,- 0 as M - * for

each fixed N and z . In particular, the rate of convergence in M of

M to A is bounded by Ao Although A0  is an unbounded

operator, it is straightforward to show that IIAoII = O(N) (see Lemma 3.2).

This estimate provides the key to the choice of the index M as a function of

the index N so that the convergence in M dominates the unbounded

behavior of IIA II (see 3.43).

We now state some useful properties of the operator AN and the0

projections given in (3.17).

W'

'!
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Lemma 3.1.

i) If f E X ,then
0. l

(3.25) IlPxf -fjX_0 as N -

ii) If f E H'(0,1) C X. then

(3.26) PN ( f ')  f 0 as N-xx

and "

.,%

(3.27) 11( p x f ) ' I f Ix-oasN-=.'"
- &I -0 as N - p

iii) If f - Y ,then

(3.28) llpNf f 0 as N
Il -1

iv)

(3.29) Pww(S) = pyw(s) in the L2 sense.

v) If w E W . then
d.

(3.30) P - sW N a N
I

vi) If D 0A) then

N 1
(3.31) Ao P ' -Ao 0 as N -.yp~ x× -.

I
;.

i 
,/,p

="" -.:;:'';".'..'.'.,./., ¢, _ .. , ."."" ....., .. ,'" v-.'-,.':,':..." " : i "" " ":' -"', " '" " ", ''", ;"" ""' "" " :"," "" i"""" l'""" "i " " ", "-", " "l" " ", '
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Vii) If w E H'(-r,O;Y) C W , then pNW E Hl(_r,O;yN) C .N and

Proof. For i) and ii), one can use virtually the same argument used by Banks

and Kappel in ([3), Theorem 4.1), with the slight modification that our splines

satisfy zero boundary conditions. For iii), let f E Y = LO(O,1) and define
F~x) 2

F tx ff(T)dT Then since pN is the orthogonal projection of Y onto

yN ,it follows that

Pf-f =min Ifu f f11Y dx jj F)-

-SI uE11Y

11~(PNF) - - 0

by (3.27). To prove iv), we note that it follows from the definition of pN as
Y

an orthogonal projection that

0 J(pN[w(S)] - [w(S)]) .cN(X)dx for almost all S E (r,0)
0

for all cN~)ey Hence, it follows that

rfb -[~)7

for all bN(s) C WN .Now iv) follows since pN, is the orthogonal projection

of W onto WN .Next, v) follows from (3.28), (3.29) and the dominated

convergence theorem. To see that (3.31) holds, assume that []E D(A0)) and

that

5A'.
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N-1

[N aih i

(3.32) A N X

0k N E bihil
ji

It follows from a straightforward calculation using the definition of AN in0

(3.13) that

N-I b lb

(3.33) E a, J hih j = j P'hj j - 1,..
i=l a a

and

(3.34) N i h'h .'= J (P )h 1,2,...,N-I.

i= i a 
a

It follows that

N-1

(3.35) E aih i =x

i=l

and

N-i

(3.36) E bih ! = (pN f),

Therefore, (3.26) and (3.27) imply that

2

"P- +  ( P )' Y , 1' 1 -- 0 .

4 4

44

4.q

.D .. ~-4 4.. 4 *'.4 4 4 4 * ~ ~ * - 444*44 ,
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Finally, to verify that vii) is true, let w E Hl(-r,O;Y) C W Then

w(s) = w(-r) + Pr W(T)dT . Using (3.29) we have, for all c(s) E W , 5

-- tPS) - cs
=pN w(S) - [PNw(-r ) + PN, w(T)dT) Ie(s) /

w -r W ,

Since PN is bounded, it can be moved inside the integral (see [8], p. 91).

Hence,
= KpNw(S) - IPvw(-r) + J Pv w'(T)dT] C(s)

=[Pww('r) + r c(s)w

Thus, pNw(s) PNww(-r) + JrPNw' v(T)dT , which implies that

pNw(s) E Hl(-r,0Y) and d PW(S = p ds

Thus, Pw(S) =Pw(-r) + fSrP V(T)dT , which implies that f

PNwW(S) E Hl(-r,O;Y) and d PN w(S) = P w
wds w s

The next lemma provides the growth rate for IIAo11

N'

Lemma 3.2. There exists a constant K independent of N and uN so that

(3.38) IIA oUNllx1 y <. KN' l 1UN lx'

,I
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for all uN E XNx yN

N-1 N-1

Proof. Let uN IUI where Ul= r aih i and u2 = E bihi Let
1U2 i=1 i=1

U v N-i N-IL
u where v = E aihi and v 2 = a Ih . By a direct

0 2 V 2  i=i i=

calculation using the definition of AN we have

N-i N-I

(3.39) E ai<hi,h )X= - E bi <h ilh;)x
i=1 i=1

and

N-i N-i

(3.40) E 1i3<h 1
1 ,h!' > E ai<hil,h! > ,i=Y i=i

for each j = 1,2,---,N-1 . Hence, using (3.40) twice we have that .

2~ N-1 -N1 %

N-1 N-I

-- E aihi", i a ih it

(3.41) K,
N-1 2J

= a i hi' %,
i=i y .,I

N--

1- 2 4

K . E a9hi  - KN2IuI Y
Iil y .

where the last inequality follows by applying the Schmidt inequality ([20]) over I

each interval. Also, by using (3.39) and the Cauchy-Schwartz inequality, we

have that

44,4,

:4
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2 N -1 N-I 

J

V1X il i=l /X
N-I N- i I

= - K bhi, E cbih

I=1 i=1 ) X

' Ilu211X liv; lx ' kN1u, lII , llx ,J2-

where the last inequality follows by again applying the Schmidt inequality over

each interval. Hence,

2 2(3.42) 11VII KN 2
1U I 2

The result follows from (3.41) and (3.42).

We are now in position to prove the necessary convergence results for the

approximation scheme defined above in (3.20) and (3.24). As discussed above in

Remark 3.1, it will be necessary to impose the following condition on the

indices N and M .

Definition. A sequence (N,MN) satisfies condition C1  if for all

N = 1,2,.. , ,

I N M NM NK(3.43) E- gj Xj - g(s) ds < > 1

j=11

where the constant K is independent of N .

IJ-'S -

S'S.
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We note that due to the convergence properties of the AVE scheme, a

sequence satisfying condition C-/ exists for any g(s) E L2(-r,O) . In particular,

for g e Cl(-r,0) , the condition is satisfied by choosing MN = N', 7> 1

Given a sequence (N,MN) , let

(3.44) AN = A 'M N ,

and denote by TN(t) the C0-semigroup generated by AN on Z

Lemma 3.3. (Stability) Let (N,MN) be a sequence satisfying condition C7Y

Then there exists constants M',13 such that for all N 1

1TN(t) 1z <  Mc13t"

Proof. For each M, define the norm 11 M on Z by

20((2+ 2 M MM bW
= j pw2  E~P) [E Egi~ XJ w(s) dx ds

W M 0 -r j=1 a
g

These norms are uniformly equivalent to the original unweighted norm on Z

It is sufficient to show that L'iANML is dissipative in the I 1M norm.

To show this, let z ; C Z . Then

(L'AN'MLz,z>M N LzL*z> M
= P ,

where L is the adjoint of L with respect to the gM norm and is given by

-r j=1
w
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Therefore,

<L'A N mLz,z > M=

- QNM ON -mj~

A' I

A N (P N+ A~ N m.O
0 aO [ rM(NN)]

L9 -rJ=1 g Jm

MM I (w )i]m -w

1r Lw)M xi

N oO
A N + AN r M 0 mp

E g )wJ
-l f j=1 XXY

0 M -xm [W)l (NM

-i j''-1 ( j ) ixw dx ds

(P J~N' EON _N g x)wds dx

t',N[c ON O r M M(N)Mld

- I N 1 .. rN ~p~ (S) d - - E gM(w .4'

0 L -rj=1 J

j=1 0

The first two lines cancel exactly, leaving unly thc term
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M fl [(WN 1 - (WN)M]gM(WN)jdx El.

j=1 0

Using Cauchy-Schwarz and the inequality 2ab a 2 + b2 , we get

M 1 
2 _

trN M , NM 2 M1 r'1 NM

2 1  [(wN)M ] dx - gM j [(W)MI dx + - gjM 1 - gM] [(wN)M]2dx
2 1 2 1 o j

I b[(w N ) ] 2d ' (O )2
a 0

The last inequality follows since g is increasing, and hence gm l1  jM

Finally, because g is bounded, the gM are bounded iniformlv in M. We

conclude that

<L-1ANMLz,z > < K<zz>

uniformly in N and M . U

Next, define the set D C 1(A) by

D = E D(A) : w E Cl(-r,O;Y)wI
Lemma 3.4. (Consislency) Let (N,MN) be a sequence satisfying condition C7

and such that MN- as N-- Then A'N z-Azas N-- for

all z E D.

-p.
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Proof. Let z = E D. Then, setting M = MN for notatinnal ease, we
NV

have

lA N z - Az 2

2

A N + = L G M A(wN)_+G(s) ds Z

[,pN 
+

xxY

2
o M rPML dw+ -[P -[P w] M -j s s.,

-r r [I - - ds
Y :

S 1 + S2  [ ]7-

Estimating the term S1 , we have

2

J. A I [G × - G(s)] ds
-r j=1 wN s)

XxY

2

+ AN [K oN] + 0rG(s) 0() ds} - Ao + 0 G(s) 0] ds}0 K N f-Gs 1wN (s)  -f [)A"-

X.Y

F ,:+ F- -
1F 2

It follows from (3.31) of Lemma 3.1 that F2 - 0 . For the term F1 , apply

first the Cauchy-Schwarz inequality and then Lemma 3.2 to get

r M 2 2

F1  jm) xg - g(s)I dsN 2 .jjw N1

-r j=1

Since N,MN satisfy condition C 7y , it follows (see 3.43) that F, - 0 .

Finally, considering the term S2 we have the estimate

'A

It" ' " + * %') . ' '+' '%' ')° ''' ''+% % % ". . "''. '.' - "''+ .'' ".' .''. '- - . % +." ." ', - " ." '.. o'. '..
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-l M d2p [[pN W]w - [P-w]M]Xql dsN wJ ds
-2 r - j d

2
+ dNww ds-P w--ds

-r ds w ds

=E 1 + E2

It follows from (3.30) and (3.32) of Lemma 3.1 that E2 - 0. For the term

El, we follow an argument analogous to that used by Banks and Burns in the

proof of Corollary 3.1 in [2]. This leads to the estimate

E 1 HI,< r.1--
Elr sup 5/ I2+ r /M+K2I<j<M 2 M f2 2

where

r d N w FdPN() [AM.1lf ds w I I ' M 1M i_

<1 sup d-w (T)- (T):,r E
ds ds flj Lj-ti4

and

K =sup dw -(6) 8 E [rO

li ds Lr i

dd"
Since N and M it follows from the uniform continuitv of' ds

on [-r,O] that E - 0

Lemma 3.5. For the sei D defined above, there exists a real nunber )10 mch

tal (A-,I)D de.,?se in Z for all Re >

'l: ': . . _ " ".. ". .. ._ _ _ _ - .., : . " " " . .. . .. ....
'-%",..,:-d ''-" £%'L-,' ,'-22 --. '":,1-:--.--'-?-2;-..5- '7-,';..".: : ","-.'-, " ,:.: % % ',' -- - ,/ '. ,'_:_,-, , -
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Proof. Since A generates a C0 -scmigroup, there exists -/0 such that

R e \> y 0  implies X Czp(A). Fix X~ with Re X> -0 . For a Jz
the equation (A -X) cifI has a unique solution ED(A) .Define the

dense subset S C Z by SZ = x xwJOY i S then J

satisfies

(3.45) + r~s) ..., ds]i - a

(3.46) - =V

dw.

(3d7 'A' -

ds

Since w E Hl(-r,0,Y) and z E C(-r,O;Y) ,it follows f romn (3.47) that

%k c- Cl(-r,0O). Hence, S C (A-X)D and the result follows.

The following is an immediate consequence of the above results. C

Theorem 3.2. Let N,NIN he a sequence satisfying condition C and such that .

MIN as N .If the sequence of operators A N Z ZN,M is

defined as above (see (3.44)1, thenr the hYpotheses of the Trotter-Kato theoremt hold,-

that is. T~t 1(t) strongly on Z

Next, we verify a similar result for the adjoint A (see (3. 10) and

(3.11 )). Since ITNMtI= ~TMt)j we need only verify hypotheses H2) and

H13) of' the Trottcr-Kato theorem. Recall that
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.

ANM - QNMpN - QN,MrlMpN pNrlMQN,MIMpN

where rM NM ZN--'- ZNM is the orthogonal projection.
a.

It is useful to distinguish between QNM (defined on all of ZN) and its -"

restriction to ZNM Let RN,M- Q N,M ZNM - ZN 'M Hence,

AN,M - pNnMRN,MnMpN

and

ANM* = PNriM(RN'M) *rMpN

where the adjoint is computed in the unweighted inner project (so that the

projections pN , JIM are orthogonal). To determine the action of AN 'M , we

compute matrix representations relative to the following basis. For i = 1 .,N-

and j 2,---,M+l , let I

e [ 0 e(N-l)+ i = ["I]

and

ej(N -)+i = 0 . .

h XI

The matrix representation of (RN'M) * is given by

M-1 (RNM)TM,

where M = [<ei,e>zJ is the (M+2)(N-1) x (M+2)(N-I) matrix whose i-j

a a

V'S
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entry is <ei,ej z , and RNM is the matrix representation of RNM . Here, the

superscript "T" denotes the matrix transpose. RN, M is calculated according to

the formula

RNM -1 [<RNMepej>z .
T "

We have ,

1
N.'

H 0 0 0 0

0 D 0 0 .

r
0 0 - D 0

M
r .0 0 0 -D

M M

.r

rD "

M

where

H =[ hih] is an (N-I)x(N-1) matrix, and0

1 I
D = hilhiJ is also an (N-I)x(N-l) matrix.

Also,

.%

-a
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[<R N,Mee >Z I

0 D 0 0 0

a
-D 0 D 0 0

-r"gjMD 0 -D D 0 0

0

-D D
r

-. gMD 0 0 0 -D

Hence, RNM, the matrix representation of RNM , is

O r -r -1
0- H-'D - --MgMH -D --g NHD

I 0 0 0

M M0 -I -I 0
0 r r

M,.- -I 0
r

0 0 0 MI M

Alo h ari ersnato f Ri

.

": -" " -" '- - .," ", " .-W v ' -'- -V--V- .'- V-V-" V-" " V-',.'-5-" "*", " :- "*'-; - ": "--"-;;"" " """ ' - '. " "
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A
0 H-'D 0 0 0 0 0 0

,..$

. gMI M M
P1 r-- .

0

-,4

NI M
- I r

I MI M
L P 0 0 rI-- , o .- ,I

Next, define the set D C D(A by

= E (A : wE C' (-r,O;Y)

rw 1
If ED , then from the above matrix representations it is clear that

a
A N P 0

AN NN04 -'] 1 + (wN)",

(ANM)[ =

I
M M M

- N' ENg XN - (wN)M (w N)M X M
j=1 j=1

N)Mwhere (w)M+I is defined by (wN)M+I a w(-r) = 0 (compare with (3.1 1)).

Lemma 3.6. Let (N,MN) be a sequence satisfying condition C), and such that

MN -- as N -- 0 Then (ANM)* A*z as N for all z E D*

;" ." ," o , €" **." € ,€ " " , " ,€" €" ' 'W
I ' € '

" ' P'- "" ' ,e''' ,,mp- - - v . , • .. .k ".,

:'..',' .'.<' 7r;, ,'.., , :-'-?, ,.'.,',b.,' 7,;...',. ,, ;-. .. , , ., ¢ .. ;.%€,. ,._..,,%-, ; ',€-. '.;., ,.%,., -I., .e-
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Proof. The proof is quite similar to that of Lemma 3.4. Let [J D"

then

II(ANM)*Z A*zl1 4

0 A o

* 1[NM w()2

+ l.~ - (0)jJ.N'

Ily

Yx '

2

r j=0
Y

2

+ M0~ > [(WN)M - (wN M -xj + ds
*-fr j=0 r + +dw

Y

F1 + F + F 3 + F 4 .

F1 -. 0 and F4 - 0 as before. For the term F2

F, [l~WN wN( o 1 12 + w oN( w(o(O) 2

S + S2

Lemma 3.1 implies S2 - 0. Also,

K 2 r 2  -*

S s  , - where K = sup w(e) . e E [-r,O]

(use (3.22) and Cor. 3.1 in [2]). Hence, F2 - 0

VV

..
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Finally,

gxM g(s) ds

+ j [ ] g(s) ds

Y

=El + E.

Clearly E - 0 , and it follows from the Schmidt inequality (see the proof of

Lemma 3.2) and condition C 7  that E- 0 . The result follows.

*'*

Lemma 3.7. For the set D defined above, there exists a real number Y, such

that (A* - I)D* is dense in Z for all Re ) > 7/

Proof. Use an argument similar to that used in the proof of Lemma 3.5. .,

Theorem 3.3. Let N,MN satisfy condition C7 . Then TNM(t)*z T(t)*z for "

all z E Z uniformly on compact t-intervals. I

Therefore, from Theorem 3.2 and Theorem 3.3, we see that the

approximation scheme defined above satisfies (3.4) and (3.5). As discussed

above, we conclude that this scheme provides a reasonable approximation for

simulation purposes (the open-loop problem) as well as for purposes of

constructing feedback gains for the (closed-loop) regulator problem. In the next

r

% %.
2! ; : i'
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section, we give the results of some numerical experiments using this

approximation scheme.

4. Numerical Results

In this section we present some numerical results related to the

approximation scheme which we have discussed. Let g P(s) denote the function

_e - S(-s) -
i , -r < s . -r/p

gp(s) = - (4.1). eSs[r(s + X_) + (i _) , r/p ( s {O,,
p +

where the constants r and p are related by

1 + (C-1r(p/r) /5(4r =(4.2) ,.

((e'5r/p-l) + (5r/p))/25 ,

and I < p < + . Condition (4.2) implies that gP(s)ds < I and for the

-r ,

parameters p = a = 1 used in the numerical runs below, it can be shown that

9P satisfies Conditions (1) and (2) in Section I above. Observe that as p ,

g (s) - -e '(-s) -  and g,(s) is a linear function. The selection of the form of -'4

the function gP(s) is made to insure that Conditions (1) and (2) hold and to

investigate the case where g (s) -(-s) at s = 0. This singular case is

important in damping studies. In particular, it can be shown that if g(s) =

-eS8(-s) , then the (open-loop) eigenvalues of A are asymptotic to a quadratic

curve and if g e Hl(-r,0), then the (open-loop) eigenvalues of A are

asymptotic to a vertical line (see [14] for details). Although g (s) belongs to

Hl(-r,0), for p - 210 the function gP (s) is "numerically singular" and the

5 jrh
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numerical results for this case should be indicative of a truly singular kernel.

Recall that for g(s) = 0, the undamped system is the wave equation with

fundamental frequencies wk = kIT, k = 1,2, -. .

Example 4.1. For this run we set p = 210 and constructed the approximate

operator ANM. The IMSL routine EIGRF was used to compute the eigenvalues

of ANM for various values of M. Since we are interested in the damping
.i

properties, we display only those eigenvalues ),N,M(k), k = 1,2,. • .N-I,
1

corresponding to the first N-1 fundamental frequencies.

Figure 1 illustrates the behavior of )O8M(k), for M = 4,8,16,32 and 64.

The interesting feature here is that for low values of M the damping curve
predicts near viscous damping and as M increases the damping curve becomes

quadratic (as to be expected for "singular kernels"). This figure supports the

remark made earlier that condition C7Y is indeed necessary. We made several

other runs for other values of N with precisely the same qualitative results.

Example 4.2. We next consider the optimal control problem (( 3 .2)N , ( 3 .3 )N). For b
this example we used the kernel g(s) = gp (s)/5 with p = 210, and selected the

observation points at xi .25, .32, .50, and .67, i = 1,2,3,4. As before, a =

p = 1 and b(x) = x2 , 0 < x < 1. Potters method was employed to compute
I

the optimal feedback gains. Shown in Figure 2 are the open loop poles for

N = 8 and M = 4, 8, 12, 16, and 32. The solid dots are the closed loop poles

for M = 32.
I

Example 4.3. Using the same data as in the previous example, we next examine

the convergence of the feedback gains. Recall that the feedback gain for the

.<- , -.-.:,"-.:.".."_.':."..'-"_-., ., ._.__,... . .., .'..", -.-. ,-.. ...,.",'- -. ,"-.", -","-"-. ,"-." . .. . .-" , -.".", ,- , -" ,'-.',. ,.',-'-' " ":< -
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infinite dimensional problem (3.2). (3.3) can be characterized by f ,ct:ons

k 1 - X, k2 E Y and k3 - W. Similarly, the gain for the approximating

problem ( 3 .2)N, ( 3 .3)N can be characterized by functions kE XN , kN YN,

and kNM E WNM. In Figure 3 we observe convergence of the functions k (x)

as N and M increase. We used values of M much larger that those of

N in order tc' satisfy condition CY. In Figure 4 and Figure 5, we observe

similar convergence for kN and kN,M.

We conclude with the following remarks. Due to the size of the

approximating system (for given N and M, N x (M+2) is the dimension of

ZNM), and the requirements on the discretization parameters N and M (i.e.

condition C),), the time and storage requirements for computation quickly

become unreasonable. Hence these numerical results are preliminary in the sense

that we could not "push" the scheme much beyond N = 10. We are currently

working on a related unconditionally convergent scheme (i.e. no condition like

C,) with the hope of reducing this computational burden. We are also

investigating the applicability of these schemes to fractional-power damping

models in beams (see [1], [20]).

~' . . .. .. h :..



-45-

M - G 4 M - 1-3 I

0i 
.

CI --I6

Fiur I
,8 K

,° ..... +...... +++ . _ . _ _2 . . _ . . ... .. . . . ... ..17!



-46-

M=2M= 16 (IPLN I.t 1111'

M\~ =12 M-=8 M

It in

- I-

N= 8

-OPEN LOOP

'if. .M=32

CLOSED) LOOP>-L

-r-

LI)

RI)

0

-0. 70 -0.58 -10. 47 -0.35 -0.23 -0. 12 -0.00
REAL

Figure



-47-

N=4 - N=6 -
M=16 M=2-8 8

8- 8

8 8 N1

8

8 

N=87 03 ." 6 N
= 
010 3.3 d0 O? 06

14=32 M4=26

2 8 %

8 8-.

8 8"

t 0.17 0.33 0.50 0.67 0.83 I 93.43 0'. t 0.33 0 50 06 7 0.83 .. '

Figure 3 .

-1

I: 4.

• " "" -" ",' " "- ',"-.' 2.".". ,"", "- -" " --.",,. -- -.. , -.... ..,, -... . .... .vj"



w-p

-48-

N=6

M= 16 M= 24

3-0 6

a J 1, 0 il (33 (3 so 6.63 03$ 3 OE 0 3 3- - - - u 50

0iur 4



.. 3.. ,f_ .r .. y-...y,-.,, .-- r. . -..- ..- -K . - r..,,,. r. r . - --. r . .,' r r .r' -'x ,. . r -. r , . r..-. .. .- ,'J
.

, ,, : . J .

,i.

,'p

',

-49-

N=4, N=6 ,

p %

t 
It

NN

Uo Q
o0

N= 8 , N=10
0=33 2 

M 2 6

]V

-6

Figure 5

"'5'

-. '

'.'" "" "'.'" ". -"-" -" .'J'J .'-Cq"J 'J.J,""," ¢'J' ','-''-",," ," -" ," ., "-"' r' . -.. "€ .- -"-" ..,"_ , .'., " • .".. /- "%.- .- .,, .. *- ", ',.- - ',. .-'



-50-

Refcrcnccs

[1] Bagley, R.L. and Torvik, P.J., Fractional calculus in the transient analysis
of viscoclastically damped structures, AIAA Journal, 23(1985), 918-925.

[21 Banks, H.T. and Burns, J.A., Hereditary control problems: numerical
methods based on averaging approximations, SIAM J. Control
Optimization, 16 (1978), 169-208.

[3] Banks, H.T. and Kappel, F., Spline approximations for functional
differential equations, J. Differential Equations, 34 (1979), 496-522.

[4] Banks, H.T. and Kunisch, K., The linear regulator problem for parabolic
systems, SIAM J. Control Optimization, 22 (1984), 684-698.

[5] Burns, J.A. and Fabiano, R.H., Modeling and approximation fo a
viscoelastic control problem, Proc. Third International Conference on
Control and Identification of Distributed Systems, Vorau, July 1986.

[6] Cliff, E.M. and Burns, J.A., Reduced approximations in parameter
identification of hereditary systems, Proc. IFIP, N.Y., 1981.

[7] Curtain, R.F. and Pritchard, A.J., Infinite Dimensional Linear Systems
Theory, Springer, Berlin, 1978.

[8] Curtain, R.F. and Pritchard, A.J., Functional Analysis in Modern Applied
Mathematics, Academic Press, London, 1977.

[9] DiBlasio, G., The linear-quadratic optimal control problem for delay
differential equations, Rend. Accad. Naz. Lincei, 71 (1981), 156-161.

[10] DiBlasio, G., Kunisch, K., and Sinestrari, E., L2 -Regularity for parabolic
partial integrodifferential equations with delay in the highest-order
derivatives, J. Math. Anal. Appl., 102 (1984), 38-57.

[11] DiBlasio, G., Kunisch, K., and Sinestrari, E., Stability for abstact linear
functional differential equations, preprint.

[12] Gibson, J.S., The Riccati integral equations for optimal control problems
on Hilbert spaces, SIAM J. Control Optimization, 17 (1979), 537-565.

[13] Gibson, J.S., Linear quadratic optimal control of hereditary differential
systems: Infinite dimensional Riccati equations and numerical
approximations, SIAM J. Control Optimization, 21 (1983), 95-139.

[14] Hannsgen, K. and Wheeler, R., Time delays and boundary feedback
stabilization in one-dimensional viscoelasticity, Proc. Third International
Conference on Control and Identification of Distributed Systems. Voran,
July 1986.

U..dm

S,.,.



p

-51-

[15] Hrusa, W.J. and Nohel, J.A., Global existence and asymptotics in
one-dimensional nonlinear viscoelasticity, Proc. 5 th Symp. on applications of
pure mathematics to mechanics, Springer leture notes in Physics, 195
(1984), 165-187.

[161 Hrusa, W.J. and Renardy, M., On a class of quasilinear partial
integrodifferential equations with singular kernels, preprint.

117] Kappel, F. and Salamon, D., Spline approximations for retarded systems
and the Riccati equation, SIAM J. Contol Optimization, 25 (1987)
1082-1117.

[18] Kunisch, K. and Schappacher, W., Necessary conditions for partial
differential equations with delay to generate Co-semigroups, J. Differential
Equations, 50 (1983), 49-79.

[19] Pazy, A., Senfigroups of Linear Operators and Applications to Partial
Differential Equations, Springer, New York, 1983.

[20] Rogers, L., Operators and fractional derivatives for viscoclastic constitutive
equations, J. Rheology, 27 (1983), 351-372.

[21] Schultz, M..H., Spline Analysis, Prentice Hall, Englewood Cliffs, N.Y., 1973.

[22] Travis, C. and Webb, G., Partial differential equations with deviating
argument in the time variable, J. Math Anal. Appl., 56 (1976), 397-409.

[23] Travis, C. and Webb, G., Existence, stability and compactness in the a-norm
for partial functional differential equations, Trans. Am. Math. Soc., 240
(1978), 129-143.

[24] Walker, J.A., Dynamical Systems and Evolution Equations, Plenum Press, N.Y.
1980.

pP.

C-

NI
SC



-~ I.,

*. UU 4'


